Original Engel Senior Telemaster

Plans and Instructions

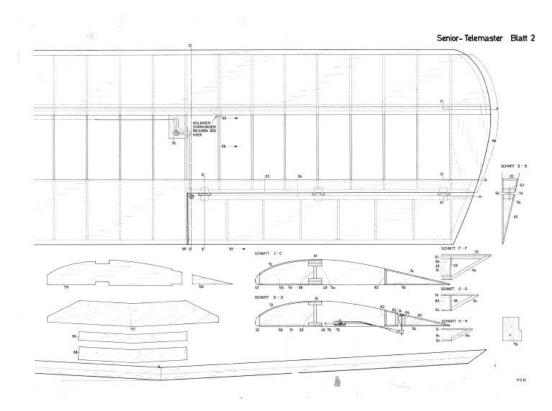
This document shows the plans, sheets 1/1a, 2/2a, and 3/3a on one page each, a translation of the German building instructions and bill of material, as well as scanned copies of their originals.

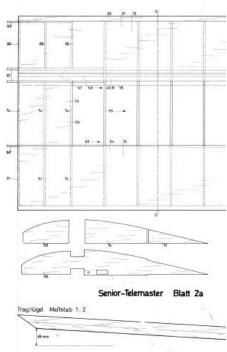
The "Telemaster", without a Senior or Junior prefix and without a 40 suffix, must have been the first, the "original" Telemaster. It was designed by Karl-Heinz Denzin, who was a very well-known German designer, when in 1967 and 1968 he worked as an employee of the Alexander Engel KG. (The KG designates the legal form of the company, a limited partnership, but obviously not with Denzin.)

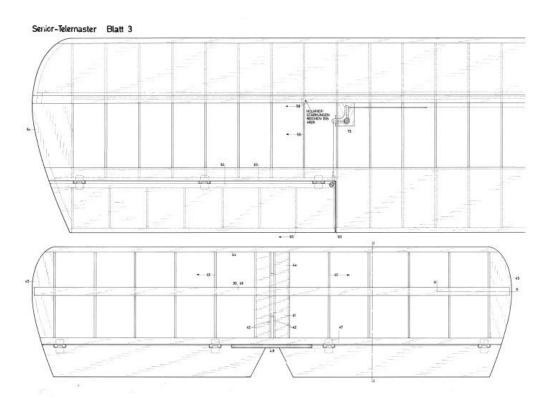
Alexander Engel ran his own model business (boats and airplanes), manufacturing kits, balsa wood, accessories, and sometimes even engines. After Denzin had designed the original Telemaster (6 ft wingspan), obviously someone else scaled it up giving the well-known Senior Telemaster (8 ft wingspan). There was also a scaled-down version, the Junior Telemaster (4 ft wingspan). From now on, Engel successfully produced and sold these "3 Telemasters" in Germany, Europe, and later (1973) even in the USA (via Hobby Lobby). Even later (1975), for some reasons Hobby Lobby had the models redesigned and produced by the well-known Joe Bridi.

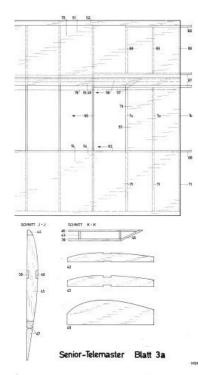
The 1973 Engel catalog has a whole <u>page</u> for the 3 Telemasters. Correctly, Denzin is mentioned as the designer of the standard Telemaster only. There is no designer named for the Senior and Junior. Accordingly, it's foremost Karl-Heinz Denzin and only then the Alexander Engel KG who wish us "always happy landings" at the end of the Telemaster building instructions. On the other hand, these wishes come only from "your Alexander Engel KG" at the end of the Senior Telemaster building instructions.


These instructions should be self-explanatory, but there is one interesting point: It is recommended for both models to cover them entirely with the special Engel Nylon fabric. That isn't modern Mylar film but should be just as puncture-proof. It has to be doped, but the special Engel Nylon and dope qualities were made to need only three coats. So the covering might come close to film even though it needs more work and money. It was just the high-quality solution in its time.


Surprisingly, in case of Senior Telemaster the Nylon was included in the kit while it had to be purchased in addition to the Telemaster kit. With the wheels it was the other way around.


Many thanks go to Brad Nichols for providing all the plans, instructions, and useful advice on all types of Telemasters. Blame me for any errors and misunderstandings.


Dec. 2011


Burkhard Erdlenbruch

BUILDING INSTRUCTIONS - SENIOR TELEMASTER

Senior Telemaster has been developed especially for the fans of big model airplanes, and due to its high inherent stability and docile flight characteristics it facilitates proceeding directly from free-flight sport models to multi R/C flying. All controls and the throttle are provided for actuation. If for some reason the ailerons are not used, the dihedral should be increased from 65 to 130 mm (2 9/16 to 5 1/8 inches) to provide sufficient lateral stability.

Due to its high-lift wing airfoil, Senior Telemaster is very well suited for special tasks like banner tow, leaflet and parachute dropping, aerial photography, etc., but it is suited for rather simple aerobatic patterns.

Building the Fuselage

Cut sheet 1 of the plan along the dashed line and glue the parts together so you have the complete fuselage views in one piece.

Now drill through the engine bearer bars 9 and glue a M3 (metric thread, about 1/8" diameter) nut under each drilled hole using epoxy. Drill the holes in the formers 12, 14, and 20, which are lead-throughs for the fuel tube, the throttle Bowden cable, and the tail wheel mount, and in former 14 make the cut-out for the tank.

Now assemble formers 15 to 20 and bind and glue the tail wheel mount to the back of former 20.

Assemble both fuselage sides from parts 1 to 6, and bevel the endings according to the top view drawing. Now drill the holes for the mounting dowels. Tack the right fuselage side flat upon the building board and glue on parts 7 to 15. Add parts 7, 9, 11, and 13 of the left fuselage side, insert the tank compartment cap 21 and glue on the left fuselage side.

Subsequently, raise the end of the right fuselage side by 52 mm (2.05") and in this position, glue the ends of both fuselage halves together. Insert formers 16 to 20 and glue on the nine fuselage bottom pieces 22 and the landing gear rest 23.

When the glue has well settled, the fuselage may be taken off the building board. After this, the upper cap bars 24, the former bracings 25, and the lower cap bars 26 are glued in. Now the landing gear parts 28, 29, and 30 are bound together using binding wire, and glued with epoxy or soldered. Install the main wheels 31 on the main landing gear. Now glue the tail wheel strut 32 into the tail wheel mount and install the tail wheel 33.

Following this, cut (saw) the engine bearer plate 34 appropriate to your engine and drill eight holes, of which the four inner ones have to fit the engine and the four outer ones have to fit the engine bearer bars 9.

Now the fuselage is carefully trimmed (fettled) and all edges, except the wing and tail saddles and the landing gear rest, are well rounded.

Building the Tail

For this purpose, the fin is glued together from parts 36 and 37 and their leading edge and tip are rounded. Cut out the leading edge of the rudder 38 to have recesses for the hinges and the elevator joiner 48, and tentatively assemble fin and rudder with the hinges.

Now the lower bar 39 of the main spar is tacked upon the plan, and the lower sheetings 40 and 41 are glued to it. Insert the ribs 42 and 43, and glue the leading edge bar 44 to their front edge. Bevel the tips 45 according to section K-k, glue them slanted to the outer ribs, insert the upper bar 46 of the main spar and the upper sheetings 40 and 41, and glue the trailing edge bar with elevator 47 to the rear end of the assembly.

Subsequently, the elevator is cut from the trailing edge, and the leading edges are beveled according to the sectional drawing. Cut the recesses for hinges and elevator joiner 48, and glue the joiner to the elevator halves.

Tentatively assemble stab and elevator with the hinges, cut out the upper sheetings to insert the fin and fit it into position.

Building the Wings

Tack the lower bars 49 of the main spar upon the plan and glue the lower doublers 50 on them. Glue the lower sheetings 51, 53, and 54 and the leading edge bar 52 in front of them and behind them. Drill holes in all ribs 55 as lead-through for the aileron linkages 76, and in the two outermost ribs 55 cut the square cutouts for the bellcrank bearer plates 75 and the bellcranks.

Insert the ribs 55 and 56 as well as the shear webs 57 to 59 and glue the tips, which have to be beveled before, slanted against the outermost ribs. Then glue the upper spar doublers 51, main spar upper bars 61, trailing edge webs 62, rear spars 63, aileron leading edge bars 64, and the aileron ribs 65. Adapt the upper edges of parts 62 to 64 to the rib profile. Subsequently, the tip edges are sanded down to match the upper rib profile, so later the front and rear sheeting fit without strain. Now the wing halves are taken from the building board and center-joined with the outermost ribs raised by 65 mm (2 9/16"). Then the dihedral braces 66 to 68 and the center-rib parts 69 to 71 are glued in.

Re-put one half of the wing flat upon the building board and cut the aileron out of the lower rear sheeting and tip, whereupon the upper sheetings 72 to 74 can be glued on. Just continue with glueing the bellcrank bearer plate 75 into the outermost rib 55.

Now the other wing half is completed in the same manner and the ailerons are cut out of the upper sheetings. Carefully trim (fettle) the wings and pay special attention to a good leading edge shape.

Aileron hinging and linkage are clearly shown in the sections D-D and E-E. How much the center bottom has to be cut out for the servo depends on the type of servo used, as well as its mounting and its linkage to the pushrods 76.

Covering

Cover all parts of the model with Engel Nylon, following the instructions included in every pack. If Engel dope is used, three coats are well enough.

Final Assembly

Slip the mounting dowels 27 through their holes in the fuselage and glue them inside. Now the tail feathers are glued together exactly square and then together and exactly aligned to the fuselage tip.

Subsequently, bolt the engine to the bearer plate and then this plate to the engine bearer bars. From the front, slide three long pieces of fuel tube through the holes in the firewall 12 into the fuselage and upon the tank nipples. Then the tank is slided into the cutout of former 14 and the fuel lines tightly pulled forward out of the fuselage.

Install the servos and link them with the pushrods 35 to the controls, after you have cut out the side coverings as shown in the side view.

Install batteries and receiver so the model's C/G is at the position shown in the side view.

Trim Flights

Test gliding is not necessary for a carefully built, three-controlled-axes (full-house) model of this size. Test-fly and trim it doing a hand launch or rise off ground, depending on your local conditions, so it flies straight and climbs moderately when not controlled (let alone), and does a shallow and straight glide with the engine throttled back or cut off.

To this end, you first adjust the glide by moving the C/G or changing the wing incidence and adjusting the rudder, then the powered flight by tilting the engine center line in the desired direction.

Always happy landings wishes you

your Alexander E n g e l KG 7134 Knittlingen

BILL OF MATERIAL

No. Description		Quantity	Material (dimensions in millimeters)		
1 upper fuselage side		2	balsa 5 mm (3/16")		
2 lower fuselage side		2	balsa 5 mm (3/16")		
3 fuselage	stringer	4	balsa 5 x 20 x 855		
4 stabilizer		2	balsa 5 x 5 x 155		
5 front cab	in bracing	2	balsa 5 x 20 x 193		
6 rear cabii	_	2	balsa 5 x x 233		
7 upper no		2	balsa 15 mm		
8 front nos		1	balsa 15 mm		
9 engine be		2	beech 10 x 25 x 102		
_	ng bolt and nut	4	steel M3 x 20		
11 lower no		2	balsa 15 mm		
12 firewall		1	plywood 5 x 110 x 123		
	mpartment bracing	2	balsa 5 mm		
14 front ca		_ 1	balsa 5 x 110 x 260		
15 rear cab		1	balsa 5 x 15 x 464 total		
		_	balsa 5 x 5 x 324 total		
16 former		1	balsa 5 x 5 x 806 total		
17 former		1	balsa 5 x 5 x 644 total		
18 former		1	balsa 5 x 5 x 492		
19 former		1	balsa 5 x 5 x 344 total		
20 former		1	plywood 3 x 22 x 57		
		_	balsa 5 x 5 x 58 total		
21 tank cor	mpartment cap	1	balsa 5 x 110 x 135		
22 fuselage		9	balsa 5 x 75 x 120		
23 landing		1	plywood 2 x 105 x 120		
24 upper ca	_	2	balsa 5 x 10 x 1047		
25 former l		2	balsa 5 x 10 x 200 total		
26 lower ca	_	2	balsa 5 x 10 x 874		
27 mountin	•	4	beech 6 diam. X 155		
	nding gear strut	1	piano wire 4 mm		
	ding gear strut	1	piano wire 4 mm		
30 cross-tie		2	piano wire 2 mm		
*31 main wh		2	R/C inflated wheel 90 mm (3.5")		
32 tail whe		1	piano wire 2.5 mm		
*33 tail whe		1	foam rubber wheel 35 mm (1.375")		
34 engine l		1	plywood 5 x 80 x 97		
35 pushrod		2	balsa 10 x 10 x 570		
36 front pa		1	balsa 6 mm		
37 rear par		1	balsa 6 mm		
J Sai pai		_	· · · · · · · · · · · · · · · ·		

No.	Description	Quantity	Material (dimensions in millimeters)
38	rudder	1	balsa 6 mm
39	lower bar of main spar	1	balsa 3 x 15 x 805
40	front sheeting	2	balsa 2 x 66 x 65
41	rear sheeting	2	balsa 2 x 80 x 65
42	center rib	4	balsa 3 mm
43	rib	10	balsa 3 mm
44	leading edge bar	1	balsa 10 x 11 x 838
45	tip	2	balsa 3 mm
46	upper bar of main spar	1	balsa 3 x 15 x 878
	trailing edge bar with elevator	1	balsa 13 x 72 x 855
	elevator joiner	1	beech 6 diam. X 150
	lower bar of main spar	2	balsa 5 x 25 x 1136
	main spar doubler	4	balsa 5 x 25 x 705
	lower leading edge sheeting	2	balsa 2 x 114 x 1136
	leading edge bar	2	balsa 10 x 18 x 1165
	lower root sheeting	2	balsa 2 x 115 x 100
	lower trailing edge sheeting	2	balsa 2 x 120 x 1136
	rib	18	balsa 3 mm
56	rib	16	balsa 3 mm
57	shear web	2	balsa 5 x 23 x 158
58	shear web	16	balsa 5 x 23 x 58
59	shear web	14	balsa 5 x 33 x 58
60	tip	2	balsa 5 x 84 x 350
61	upper bar of main spar	2	balsa 5 x 25 x 1202
	trailing edge web	34	balsa 2 x 58 x 26
63	rear spar	2	balsa 5 x 22 x 520
	aileron leading edge bar	2	balsa 15 x 20 x 515
	rib	16	balsa 3 mm
66	leading edge dihedral brace	1	plywood 2 mm
	main spar dihedral brace	2	plywood 2 mm
68	trailing edge dihedral brace	1	plywood 2 mm
	front part of center rib	6	balsa 3 mm
70	center part of center rib	6	balsa 3 mm
71	•	6	balsa 3 mm
72	upper leading edge sheeting	2	balsa 2 x 120 x 1208
73	upper root sheeting	2	balsa 2 x 117 x 100
	upper trailing edge sheeting	2	balsa 2 x 125 x 1185
	bellcrank bearer plate	2	plywood 2 x 35 x 43
	aileron pushrod	2	brass wire 2 diam. X 620
	•		

Furthermore, the kit includes Engel Nylon for covering.

* Parts 31 and 33 are not included in the kit.

Wheels, tank and spinner are available as accessory kit, order number 1391/Z.

Needed in addition:

1 engine 6 to 10 ccm (.37 to .61) with	matching Tornado Ny	ylon propeller
1 spinner 60 mm (2 3/8")	order number	3238
4 engine mounting bolts	order number	805/20
M3 x 20		
4 Nylock nuts M3	order number	260/3
35 cm Bowden cable	order number	249
1 plastic R/C tank 500 ccm (17 oz)	order number	3195/Q
2 Nylon control horns	order number	241
2 adjustable control horns	order number	261
5 clevises	order number	257
3 servo clips	order number	252
2 bellcranks 90°	order number	242
12 precision control hinges	order number	262

UHU-hart (cellulose glue), UHU-coll (white wood glue), UHU-plus (epoxy glue) Engel grain filler, Engel dope

BAUANLEITUNG - SENIOR-TELEMASTER

Senior-Telemaster wurde speziell für die Liebhaber großer Flugmodelle entwickelt und ermöglicht aufgrund seiner großen Eigenstabilität und gutmütigen Flugeigenschaften den direkten Übergang von Freiflug - Sportmodellen zum Mehrkanal-Fernlenkflug. Sämtliche Ruder und die Motordrossel sind zur Betätigung vorgesehen. Falls aus irgendeinem Grund auf die Betätigung der Querruder verzichtet wird, ist zur Sicherung einer außreichenden Querstabilität die V-Form von 65 auf 130 mm zu vergrößern.
Senior-Telemaster eignet sich auf Grund seines stark tragenden Tragflügelprofils sehr gut für Sonderaufgaben wie Bannerschlepp, Flugblatt-und Fallschirmabwurf, Luftfotografie usw., ist jedoch für einfachere Kunstflugfiguren geeignet.

Rumpfbau Schneiden Sie Blatt 1 des Bauplans entlang der gestrichelten Linie auseinander und kleben ihn so zusammen, daß bie die vollständigen Rumpfansichten in einem

Stück erhalten.

Nun werden die Motorträger 9 durchbohrt und unter jede Bohrung eine Mutter M 3 mit UHU-Plus geklebt. Bringen Sie in den Spanten 12, 14, und 20 die Bohrung für den Kraftstoffschlauch, die Durchführung des Drosselbowdenzuges und zur Befestigung des Spornradlagers an und schneiden Spant 14 zur Aufnahme des Tanks aus.

Jetzt werden die Spanten 15-20 zusammengebaut und das Spornradlager hinter

Spant 20 gebunden und geklebt.

Bauen Sie aus den Teilen 1-6 die beiden Rumpfseiten zusammen und schrägen die Enden gemäß der Draufsichtzeichnung ab. Nun werden die Löcher zur Aufnahme der Befestigungsdübel gebohrt. Heften Sie die rechte Rumpfseite flach auf das Baubrett und leimen die Teile 7-15 auf. Fügen Sie die Teile 7,9;11, und 13 der linken Rumpfseite hinzu, setzen den Tankraumdeckel 21 ein und leimendie linke Rumpfseite auf.

Anschließend wird das Ende der rechten Rumpfseite um 52 mm angehoben und die Enden der beiden Rumpfseiten in dieser Lage zusammengeleimt. Setzen Sie die Spanten 16-20 ein und leimen die 9 Rumpfböden 22 und die Fahrwerksauflage

23 an.

Wenn der Leim gut getrocknet ist kann der Rumpf vom Baubrett gelöst werden. Danach werden die oberen Deckleisten 24, die Spantenverstärkung 25, und die untere Deckleiste 26 eingeleimt. Jetzt werden die Fahrwerkteile 28, 29, und 30 mit Bindedraht zusammengebunden und mit UHU-Plus verklebt oder verlötet. Befestigen Sie die Haupträder 31 auf dem Fahrwerk. Dann kleben Sie die Sporn-radstrebe 32 in das Spornradlager und befestigen das Spornrad 33. Im Anschluß daran sägen Sie die Motorbefestigungsplatte 34 entsprechend Ihrem Motor aus und bohren 8 Löcher, von denen die 4 inneren an den Motor und die vier äußeren an die Bohrungen der Motorträger 9 angepaßt werden müßen. Nun wird der Rumpf gut verputzt und alle Kanten, mit Ausnahme von Flügel-, Leitwerks- und Fahrwerkauflage sauber abgerundet.

Leitwerksbau

Dazu wird die Seitenflosse aus den Teilen 36 und 37 zusammengeleimt und ihre Vorder- und Oberkante abgerundet. Sparen Sie die Vorderkante des Seitenruders 38 für die Scharniere und die Höhenruderverbindung 48 aus und bauen Flosse Jetzt wird der Hauptholm-Untergurt 39 auf die Zeichnung geheftet und die unteren Beplankungen 40 und 41 dagegengeleimt. Setzen Sie die Rippen 42 und 43 ein und leimen die Nasenleiste 44 davor. Schrägen Sie die Randbogen 45 entsprechend Schnitt K-k ab, leimen sie schräg gegen die äußersten Rippen, setzen den Hauptholm-Obergurt 46 und die oberen Beplankungen 40 und 41 ein und leimen Sie die Randbogen 45 entsprechend Schnitt K-k ab, leimen sie schräg gegen die äußersten Rippen, setzen den Hauptholm-Obergurt 46 und die oberen Beplankungen 40 und 41 ein und leimen Sie die Endleiste mit Höhenruder 47 hinter den Zusammenbau.

Anschließend wird das Höhenruder von der Endleiste getrennt und die Vorderkanten gemäß der Schnittzeichnung abgeschrägt. Bringen Sie die Aussparungen für Scharniere und Höhenruderverbindung 48 an und verleimen die Ruder mit der Verbindung.

Verbinden Sie Höhenflosse und Höhenruder provisorisch mit den Scharnieren, sparen die oberen Beplankungen zur Aufnahme der Seitenflosse aus und passen diese an.

Tragflügelbau
Heften Sie die Hauptholmuntergurte 49 auf die Zeichnung und leimen die unteren
Holmverstärkungen 50 auf. Leimen Sie die unteren Beplankungen 51. 53 und 54
und die Nasenleiste 52 davor und dahinter. Bringen Sie in allen Rippen 55 die
Bohrungen für die Durchführung der Querruderstoßstangen 76 an und in den beider
äußersten Rippen 55 die rechteckige Aussparung für die Umlenkhebel-Lagerplatter
75 und die Umlenkhebel an.

Setzen Sie die Rippen 55 und 56 sowie die Holmstege 57 bis 59 ein und leimen die vorher abgeschrägten Randbogen schräg gegen die äußersten Rippen. Danach leimen Sie die oberen Holmenverstärkungen 51, Hauptholm-Obergurt 61, Endleisten stege 62, Hilfsholme 63, Querruder-Nasenleisten 64 und die Querruderrippen 65 ein. Passen Sie die Oberkanten der Teile 62 bis 64 der Rippenform an. Anschließ end werden die Kanten der Randbogen auf die Höhe der Rippenoberseiten heruntergeschliffen, damit später Nasen- und Endleistenbeplankungen ohne Spannung aufliegen können. Jetzt werden die Tragflügelhälften vom Baubrett gelöst und mit um 65 mm angehobenen äußersten Rippen in der Mitte zusammengesetzt. Dann werden die Knickverstärkungen 66 bis 68 und die Mittelrippenteile 69 bis 71 eingeleimt.

Legen Sie eine Tragflügelhälfte wieder flach auf das Baubrett und trennen das Querruder aus der unterern Endleistenbeplankung und dem Randbogen heraus, worauf die oberen Beplankungen 72 bis 74 aufgeleimt werden können. Leimen Sie auch gleich das Umlenkhebel-Lagerbrett in die äußerste Rippe 55 ein. Nun wird die andere Tragflügelhälfte genauso vervollständigt und die Querruder aus der oberen Beplankung herausgetrennt. Verputzen Sie den Tragflügel sorgfältig und achten besonders auf eine gute Formgebung der Nasenleisten. Die Befestigung und der Antrieb der Querruder ergibt sich eindeutig aus den Schnitten D-D und E-E. Wie weit die Unterseite des Mittelstücks für die Rudermaschine ausgespart werden muß, hängt von dem verwendeten Muster ab, desgleichen ihre Befestigung und Verbindung mit den Stoßstangen 76.

Bespannung Bespannen Sie sämtliche Teile des Modells mit Engel-Nylon. Dabei ist die in jeder Packung beiliegende Gebrauchsanweisung zu beachten. Bei der Verwendung von Engel-Spannlack sind drei Anstriche völlig ausreichend.

Zusammenbau Schieben Sie die Befestigungsknebel 27 durch die Bohrungen des Rumpfes und leimen sie von innen her fest. Jetzt werden die Leitwerke genau senkrecht zueinander verleimt und gemeinsam genau ausgerichtet auf das Rumpfende. Anschließend schrauben Sie den Motor auf die Befestigungsplatte und diese dann auf den Motorträger. Schieben Sie 3 lange Stücke Kraftstoffschlauch von vorne durch die Bohrung des Spants 12 in das Rumpfinnere und auf die Stutzen des Tanks. Dann wird der Tank in die Aussparung von Spant 14 geschoben und die Kraftstoffschläuche straff nach vorn heraus gezogen. Bauen Sie die Rudermaschinen ein und verbinden sie durch die Stoßstangen 35 mit den Rudern, nachdem Sie an der Seitenansicht angegebenen Stelle die Bespannungen aufgeschnitten haben.
Bauen Sie Akkus und Empfänger so ein, daß der Schwerpunkt des Modells an der in der Seitenansicht angegebenen Stelle liegt.

Einfliegen

Probegleitflüge sind bei einem sorgfältig gebauten und um alle drei Achsen stauerbaren Modell dieser Größe nicht nötig. Fliegen Sie es je nach örtlichen Verhältnissen im Hand- oder Bodenstart so ein, daß es ungesteuert genau geradeaus fliegt und dabei mäßig steigt und mit gedrosselten oder Stehenden Motor einen flachen und geraden Gleitflug ausführt.

Dazu korrigieren Sie zunächst den Gleitflug durch Verlegen des Schwerpunkts oder Veränderung des Tragflügel-Einstellwinkels und Einstellen des Seitenruders Danach den Kraftflug durch Versetzen der Motor-Längsachse in der gewünschten Richtung.

Stets glückliche Landungen wünscht Ihnen

Ihre Alexander E n g e l KG 7134 Knittlingen

STÜCKLISTE

Nr. Benennung	Anzahl	Material
1 Obere Rumpfseite	2	Balsa 5mm
2 Untere Rumpfseite	2242221242121	Balsa 5mm
3 Rumpfgurt	4	Balsa 5x20x855
1.50 - (1.00, 0.50) - 	ż	Balsa 5x5x155
4 Höhenleitwerksauflage	2	
5 Vordere Kabinenverstärkung	2	Balsa 5x20x193
6 Hintere Kabinenverstärkung	2	Balsa 5x20x233
7 Oberer Nasenklotz	2	Balsa 15 mm
8 Vorderer Nasenklotz	1	Balsa 15 mm
9 Motorträger	2	Buche 10x25x102
10 Befestigungsschraube u. Mutter	4	Stahl M3x20
11 Unterer Nasenklotz	2	Balsa 15 mm
12 Motorspant	1	Sph. 5x110x123
13 Tankraumverstärkung	ż	Balsa 5 mm
14 Vorderer Kabinenspant	1	Balsa 5x110x260
	i	Balsa 5x15x464 ges
15 Hinterer Kabinenspant		Balsa 5x5x324 ges.
46.0	4	
16 Spant	1	Balsa 5x5x806 ges.
17 Spant	1	Balsa 5x5x644 ges.
18 Spant	1	Balsa 5x5x492
19 Spant	1	Balsa 5x5x344 ges.
20 Spant	1	Sph. 3x22x57
-		Balsa 5x5x58 ges.
21 Tankraumdeckel	1	Balsa 5x110x135
22 Rumpfboden	9	Balsa 5x75x120
23 Fahrwerksauflage	1	Sph. 2x105x120
24 Obere Deckleiste	2	Balsa 5x10x1047
	2	Balsa 5x10x200 ges
25 Spantverstärkung	2	Balsa 5x10x874
26 Unter Deckleiste	<u> </u>	
27 Befestigungsknebel	4	Buche 60x155
28 Vordere Fahrwerkstrebe	1	Stahldraht 4 mm
29 Hintere Fahrwerkstrebe	1	Stahldraht 4 mm
30 Abstandstrebe	2	Stahldraht 2 mm
★31 Hauptrad	2	RC-Ballonrad 90mm
32 Spornradstrebe	912224112211121	Stahldraht 2,5 mm
*33 Spornrad	1	Moosgummirad 35 mm
34 Motorbefestigungsplatte	1	Sph. 5x80x97
	2	Balsa 10x10x570
35 Stoßstange	1	Balsa 6 mm
36 Seitenflossenvorderteil	1	Balsa 6 mm
3.7 Seitenflossenhinterteil	1	Daira O IIIII

Nr. Benennung		Anzahl	Motorial	
38 Seitenruder		 1	Material	
39 Hauptholm-Untergurt		1	Balsa 6 mm	
40 Vordere Beplankung		ż.	Balsa 3x15x805 Balsa 2x66x65	
41 Hintere Beplankung		2	Balsa 2x80x65	
42 Mittelrippe		4		
43 Rippe		10		
44 Nasenleiste		1		
45 Randbogen		2	Balsa 10x11x838	
46 Hauptholm-Obergurt		2	Balsa 3 mm	
47 Endleiste mit Höhenruder		1	Balsa 3x15x878	
48 Höhenruderverbindung		1	Balsa 13x72x855	
49 Hauptholm-Untergurt		2	Buche 60 x150	
50 Holmverstärkung		71	Balsa 5x25x1136	
51 Untere Nasenbeplankung		2	Balsa 5x25x705	
52 Nasenleiste		2 4 2 2 2 2 2	Balsa 2x114x1136	
53 Untere Wurzelbeplankung		2	Balsa 10x18x1165	
54 Untere Endleistenbeplankung		2	Balsa 2x115x100	
55 Rippe		18	Balsa 2x120x1136	
56 Rippe		16	Balsa 3 mm	
57 Holmsteg			Balsa 3 mm	
58 Holmsteg		2	Balsa 5x23x158	
59 Holmsteg		16	Balsa 5x23x58	
60 Randbogen		14	Balsa 5x33x58	
61 Hauptholm-Obergurt		2 2 34 2 2 16	Balsa 5x84x350	
62 Endleistensteg		211	Balsa 5x25x1202	
63 Hilfsholm		24	Balsa 2x58x26	
64 Querruder-Nasenleiste		2	Balsa 5x22x520	
65 Rippe		20	Balsa 15x20x515	
66 Nasenleisten-Knickverstärkung	-		Balsa 3 mm	
67 Hauptholm-Knickverstärkung		1	Sph. 2 mm	
68 Endleisten-Knickverstärkung		2	Sph. 2 mm	
69 Mittelrippen-Vordertoil		1	Sph. 2 mm	
70 Mittelrippen-Vordertoil		. 6	Balsa 3 mm	
70 Mittelrippen-Mittelteil 71 Mittelrippen-Hinterteil		6	Balsa 3 mm	
72 Obere Nasenbeplankung		6	Balsa 3 mm	
73 Ohone Wungalbanlankung		2	Balsa 2x12ox1208	
73 Obere Wurzelbeplankung		2	Balsa 2x117x100	
74 Obere Endleistenbeplankung		2	Balsa 2x125x1185	
75 Umlenkhebel-Lagerbrett		2166622222	Sph. 2x35x43	00
76 Querruder-Stoßstänge		2	Messingdraht 20x6	20

Weiterhin enthält der Baukasten Engel-Nylon zum Bespannen. *Die Bauteile 31 und 33 sind nicht im Baukasten enthalten. Räder, Tank und Spinner sind als Zubehörsatz Best.-Nr. 1391/Z lieferbar.

Außerdem werden benötigt:

1 Motor 6 bis 10 ccm mit passender	Tornado-Nyllonlu	ftschraube
1 Spinner 60 mm	BestNr.	3238
4 Motorbefestigungsschrauben	BestNr.	
M3 x 20		//
4 Nylock-Muttern M3	BestNr.	260/3
35 cm Bowdenzug	BestNr.	249
1 Plastik-RC-Tank 500 ccm	BestNr.	
4 Nylon-Ruderhörner	BestNr.	
2 Verstellbare Ruderhörner	BestNr.	
5 Ruderanschlüsse	BestNr.	
3 Servo-Clips	BestNr.	
2 Umlenkhebel 90°	BestNr.	
12 Präzisions-Ruderscharniere	BestNr.	

UHU-hart, UHU-coll, UHU-plus Engel-Porenfüller, Engel-Spannlack